3.11 Summary 141

3.14 A software development company s employee records contain tne following intormauon:
ID (10), Name (25), Position (10), Age (2), Qualifications (9), Projects (10 repeated)

The value in the parentheses is the size of each entry in bytes. An employee can be invoived
in a number of projects at the same time; thus, this field is repeated. An internal coding
mechanism groups qualifications into three types, each requiring 3 bytes to encode. The age
of employees is divided into 10 groups. The total number of employees is 500 and, at any
given time, up to 100 projects are handled. The file is to be maintained on disk with a
physical block size of 4096 bytes. The pointer size for addresses is 4 bytes.

(a) Design file organizations for each of the access methods listed below that at least
satisfy the retrieval/query transactions, also specified below, as efficiently as
possible. Diagram the organization and discuss how your file organization
satisfies the retrieval requirements.

Access methods: Index-sequential, inverted, and B *-tree.

Retrieval requirements (specified in %):

1. List employees by name in alphabetical order (10%).

2. Print data for employees in some age group and with certain qualifications (50%).

3. Print names and current projects of employees with certain qualifications and
holding certain positions (40%).

(b) Compare your design with organizations based on a single type of access method

with respect to space and access time. In the derivation of the access time, use the

following terms:

Block access time (random): ty
Block Access time (next in sequence): ts

Method Space Total Access Time
A B c
Your Design
lndei-sequential
Inverted
B*-tree

(c) Which access method minimizes total access time for all three application types?
(Be sure to take transaction frequencies into account.) If accesses for application B
also required the changing of age and qualifications, would this method still be the
most efficient? Justify your answer.

3.3 The manufacturer’s specifications for a disk drive are:

Number of surfaces 20

Number of tracks/surface 800

Number of sectors/track 20

Number of bytes/sector 512

Rotational speed 6000 rpm

Time to move arm_to adjacent cylinder 5 msec

Average time to move arm to any cylinder 20 msec

(a) How many cylinders wil} be required to store 100,000 records each 100 bytes
long if no logical record is split across sector boundaries?

142

Chapter 3 File Organization

3.17

3.18

3.19

3.21

(b) If the key plus cylinder-cum-track addresses require 8 bytes, when the above file
is created as an indexed-sequential file with cylinder and track indexing, estimate the
average time to locate a record. Assume that there are no overflow records and that the
search of an index or sector, after having been transferred to main memory, is
negligible.
Consider the cylinder of an index-sequential tile as shown below. Each cylinder has six
surfaces and a surface has four sectors. Each sector can hold three records. Surface 05 is
used for the overflow records. (L indicates null pointers)

Cyl. Surface Sectors

41 1 2 3 4
00 Tr.Index ALA, As,Aq,Ag A,Aps
01 ArAp Ay Az,Ax Az, A3z1,A%%
02 Ap,Ap Aus,AusrAds Asi,As2,Ass Aso,Aq
03 Azs,Av6,A7 Aqg,Ago Ag3 Ago,Ag)
04 A9’:9A94 AOGvAOC Alw AlmrAIIS
0s 1 4 1 4

Give a track index that captures the current state of the cylinder. Also give the status of the
cylinder and track index after the following operations have been performed:

I AM! I A‘l! I A959 D Al)! I AS’ 1 ABZ! I A“’ I AJ!’ D AJO’ l A!v D A49 I Alzz, D AIZSO I
AlZ" I As‘, D A6I9 I A60

where I represents the insert, and D the delete, operation.

Create an index-sequential file using three cylinders, each of which has eight tracks. Up to
four records can be stored in each track. Make appropriate provisions for overflow. The file
is created initially with the following records in the order given:

132, 38, 87, 64, 88, 40, 759, 12, 459, 45, 362, 85, 835, 638, 414, 820, 41, 91, 29, 194,
517,491, 524, 294, 43, 185, 791, 139, 59, 44, 11, 414, 37, 184, 472, 39, 88, 42, 758,
460, 412, 48, 415

Indicate the reorganization of the file if the following records are subsequently deleted and
added. D preceding the key indicates that the record is to be deleted; A indicates that it has
to be added:

D91, A92, D44, A43, A47, Ad6

Comment on the differences between index-sequential files and B* -tree file organizations.
Compare them for use wherever an indexed access may be required.

Give algorithms for the insertion and deletion of records in a B* -tree.

In a B-tree file, pointers to the blocks containing the records exist even in the index level
nodes. How does this alter the algorithms for insertion and deletion that you wrote for
Exercise 3.197 Comment on the relative advantages and disadvantages of B-trees and B*-
trees.

The accompanying figure shows the B*-tree index and the leaf nodes of a B*-tree of order
3. The blocks containing the leaf nodes hold the actual records. (Only the key valucs are
shown in the figure.) Each block must hold at least three and at most five records. Show the
structure of the index after the following records are inserted or deleted. D preceding the key
indicates that the record is to be deleted; A indicates that it has to be added:

D91, A98, D44, Ad3, A47, Ad6

3.11 Summary 143

Bibliographic Notes

Discussion of storage devices and data organization methods is found in computer manufac~
turers manuals. A discussion on blocking and buffering techniques appears in (Wate 76) The
handling of sequential files is the subject of many a textbook on programming; see also (Dwye
81). (Lum 71) presents hashing techniques as does (Litw 80). Index sequential files are the
subject of a number of IBM manuals (IBM 1, IBM 2). Extendable hashing is discussed in
(Fagi 79). B-tree indexes are presented in (Baye 72). A number of textbooks cover the areas
of files and data structures, including (Ghos 86), (Harb 88), (Hans 82), (Horo 82), and (Knut
73). The discussion in this chapter is based to a great extent on (Goya 87).

.Bibliography

(Baye 72) R. Bayer, ‘‘Symmetric Binary B-trees: Data Structure and Maintenance Algorithms,”’ Acta
Informatica, 1(4), 1972, pp. '290-306.

(Come 79) D. Comer, ‘“The Ubiquitous B-tree’’, ACM Computing Surveys’’ 11-(2), June 1979, pp. 121-137.

(Desa 89) B. C. Desai, ‘‘Performance of a Composite Attribute and Join Index,”” IEEE Trans. on Software
Engineering 15-(2), February 1989, pp. 142-152.

(Dwye 81) B. Dwyer, ‘‘One More Time—How to Update a Master File,’" Communications of the ACM 24 (1),
1981, pp. 3-8.

(Fagi 79) R, Fagin, J. Nievergelt, N. Pippenger, & H. R. Strong, *‘Extendible Hashing—A Fast Access Method
for Dynamic Files,’” ACM Trans. on Database Systems, 4-(3), September 1979, pp.315~
4.

(Ghos 86) S. P. Ghosh, Data Base Organization for Data Management, 2nd ed. Orlando, FL: Academic Press,
.1986. '

(Goya 87) P. Goyal, *‘File Organization,”’ Computer Science Report, Concordia University, Montreal, 1987.

(Hans 82) O. Hanson, Design of Computer Data Files, Rockville, MD: Computer Science Press, 1982.

(Harb 88) T. R. Harbon, File Systems Structures and Algorithms. Englewood Cliffs, NJ: Prentice-Hall, 1988.

(Horo 82) E. Horowitz & S. Sahni, Fundamentals of Data Structures, 2nd ed. Rockville, MD: Computer
Science Press, 1982.

(BM 1) ‘‘Introduction to M Direct Access Storage Devices and Organization: Methods ** IBM Mapual GC
2016491

148 Chapter 4 The Relational Model

. The data models introduced in Chapter 2 differed only in the manner in which rela-
- tioniships among data are represented. In this chapter we concentrate on the relational
+ . data model (RDM), which was formally introduced in 1970. Since that time, it has
" undergone extensive study. The relational model frees the user from details of storage
- stractures and access methods. It is also conceptually simple and, more importantly,
based on sound theoretical principles that provide formal tools to tackle problems
arising in database design and maintenance.

Numerous different formulations of the RDM have been presented and recenuy
interest has been shown in its formalization. We shall, however, take a semiformal

4- 1 ' Intrpductlon

In practice we can distinguish between entities and the relationships that exist be-
tween them. In modeling, we represent an entity set in the database by a set of its
properties. However, only those properties of the entity type of interest to the appli-
cation are used in the model. A data model allows the capturing of these properties
using its data structures. Note that the association between the properties is only
implicitly captured, i.e., we do not state what kind of association exists between the
properties.

Furthermore, we may wish to retrieve or update the stored data and for this
purpose a data model supports certain operations. The data may also need to conform
to certain consistency and integrity rules, as in the case of a bank’s rule that a cus-
tomer’s account balance remain nonnegative (i.e., = 0). These constraints are spec-
ified as integrity rules.

The relational data model, like all data models, consists of three basic compo-
nents:

® a set of domains and a set of relations

@ operations on relations

® integrity rules

Each of these components is illustrated in the following examples.

Example 4.1 In this simple example we model certain properties of a number of database
management systems (DBMSs). Let us assume that we want to maintain a
database of these DBMSs. This database will register their names, the par-
ticular data models employed, and the company that developed and markets
the DBMSs. Some of these DBMSs are shown in the table SOME_DBMS
in Figure A. B

4.1 Introduction 147

*
Figure A Sample relation SOME _DBMS (Name, Data_Mode,
Company)
SOME_DBMS
Name Data_Model | Company

Data | Network WXY Inc.

Data-R Relational WXY Inc.

ISS Hierarchical BCD Systems

ISS/R Relational BCD Systems

ISS/R-PC Relational BCD Systems

Tables Relational ABC Relational Systems Inc. B

From eur knowledge of the relational model gained in Chapter 2, we can iden-
tify SOME_DBMS as a relation with the attributes Name, Data_Model, and Com-
pany. The fact that a relation has certain attributes is specified by its scheme, usually
written as RELATION_SCHEME_NAME(Attribute_Name,, Attribute_Name;,
. . .). Each attribute is defined over a set of values known as-its domain. For our
sample relation, the scheme tan be specified as SOME_DBMS(Name, Data_Model,
Company). The relation SOME_DBMS shown in Figure A in Example 4.1 consists
of six tuples, i.e., the cardinality of the relation SOME_DBMS is six. The number
of attributes in the relation scheme is called its degree or arity. The degree of the
scheme SOME_DBMS is three. Each tuple captures the association among the prop-
erties name, data model, and company of a DBMS package. Here the attribute Name
can be used to uniquely identify a given DBMS and the comresponding tuple in the
relation.

Just as we are able to model an entity and its properties by a relation, we can
model relationships between entities using a relation. This is illustrated in Example
4.2. In Section 4.2 we shall study the relational database structures in a more formal
manner. o

Example 4.2 Certain DBMSs of Example 4.1 are used in particular applications. The
application can be modeled using the budget code of the application as an
identifying attribute or key and the name of the application. Some tuples for
the relation APPLICATION(App_Name, Budget_Code) are shown in part i
of Figure B. The E-R diagram of the relationship between APPLICATION
and SOME_DBMS, named WHERE_USED, is shown in part ii of the fig-
ure. We can record the information about this relationship in the relation
WHERE_USED by pairing the keys from the entities SOME_DBMS and
APPLICATION. This relationship can be expressed as a relation, some tu-
ples of which are shown in part iii of Figure B. B

150

Chapter 4 The Relational Model

Figure 4.1

~ required rows of the table of Figure D are then identified to respond to the
above query. Note that in joining the rows of the two tables, we only join
those rows or tuples that have the same value for the attribute Name that is
common to both these relations. As we will see in Section 4.3.2, the rela-
tions shown in Figures D and E, are the result of the so-called equi-join
operations. B

The number of tuples in the join of SOME_DBMS and VERSION is the same
as those in VERSION because a tuple in SOME_DBMS has the same value of the
Name attribute as a tuple in VERSION. Note that the two occurrences of the attribute
Name in the join can be distinguished by preceding each with the corresponding
relation name. The first attribute is labeled VERSION.Name and the second similarly
named attribute is called SOME_DBMS.Name.

Figure D in Example 4.3 demonstrates that many of the tuples in the resulting
tables are not required for answering the query. We could have approached the se-
lection on the table of Figure A in Example 4.1, choosing only relational DBMSs
and thereby giving a joined table as shown in Figure Ei in Example 4.3. But if we
had selected only those rows or tuples from Figure B in Example 4.2, released after
1984, and joined this reduced set of tuples with the table SOME_DBMS, we would
get a smaller table as illustrated in Figure Eii in Example 4.3. The response to the
query is obtained by selecting only those tuples from one of the tables in Figure E
that satisfy the two conditions of the query (in other words, taking a *‘horizontal
subset” of the tables of Figure E). The resulting tuples are given in Figure 4.1a. The
names of the companies are obtained by taking a ‘‘vertical subset’’ of the table on
the column Company (in other words, projecting the table of Figure 4.1a on the
column Company). The result is shown in Figure 4.1b. The method of determining
which operation to perform first is the topic of query optimization, which we discuss
in Chapter 10.

The join is just one way in which data in a,relational database can be manipu-
lated. Several kinds of data manipulation languages have been defined for the rela-
tional model. Most relational data manipulation languages are more assertional than
procedural. In a purely assertional data manipulation language the target data are
specified by stating their properties instead of describing how they can be retrieved.
The majority of languages are based on a combination of relational algebra and re-

(a) Selecting only some tuples from the join of relation SOME_DBMS relation VER-
SION and (b) projecting on the column Company.

VERSION.
Name

Release Year Name

SOME_DBMS.

Data_Model Company Company

ISS/R-PC
Data-R
“Tables

Relational BCD Systems BCD Systems
DataR Relational WXY Inc. WXY Inc.
Tables Relational ABC ABC

1.0 1985 | ISS/R-PC
3.0 1986

1.0 | 1987

@ o

